Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Radiol Exp ; 8(1): 17, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321340

RESUMO

This review aims to take a journey into the transformative impact of artificial intelligence (AI) on positron emission tomography (PET) imaging. To this scope, a broad overview of AI applications in the field of nuclear medicine and a thorough exploration of deep learning (DL) implementations in cancer diagnosis and therapy through PET imaging will be presented. We firstly describe the behind-the-scenes use of AI for image generation, including acquisition (event positioning, noise reduction though time-of-flight estimation and scatter correction), reconstruction (data-driven and model-driven approaches), restoration (supervised and unsupervised methods), and motion correction. Thereafter, we outline the integration of AI into clinical practice through the applications to segmentation, detection and classification, quantification, treatment planning, dosimetry, and radiomics/radiogenomics combined to tumour biological characteristics. Thus, this review seeks to showcase the overarching transformation of the field, ultimately leading to tangible improvements in patient treatment and response assessment. Finally, limitations and ethical considerations of the AI application to PET imaging and future directions of multimodal data mining in this discipline will be briefly discussed, including pressing challenges to the adoption of AI in molecular imaging such as the access to and interoperability of huge amount of data as well as the "black-box" problem, contributing to the ongoing dialogue on the transformative potential of AI in nuclear medicine.Relevance statementAI is rapidly revolutionising the world of medicine, including the fields of radiology and nuclear medicine. In the near future, AI will be used to support healthcare professionals. These advances will lead to improvements in diagnosis, in the assessment of response to treatment, in clinical decision making and in patient management.Key points• Applying AI has the potential to enhance the entire PET imaging pipeline.• AI may support several clinical tasks in both PET diagnosis and prognosis.• Interpreting the relationships between imaging and multiomics data will heavily rely on AI.


Assuntos
Aprendizado Profundo , Radiologia , Humanos , Inteligência Artificial , Tomografia por Emissão de Pósitrons , Poder Psicológico
4.
Cancers (Basel) ; 15(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37627174

RESUMO

This study aimed to examine brain metabolic patterns on [18F]Fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) in breast cancer (BC), comparing patients with tension-type headache (TTH), migraine (MiG), and those without headache. Further association with BC response to neoadjuvant chemotherapy (NAC) was explored. In this prospective study, BC patients eligible for NAC performed total-body [18F]FDG PET/CT with a dedicated brain scan. A voxel-wise analysis (two-sample t-test) and a multiple regression model were used to compare brain metabolic patterns among TTH, MiG, and no-headache patients and to correlate them with clinical covariates. A single-subject analysis compared each patient's brain uptake before and after NAC with a healthy control group. Primary headache was diagnosed in 39/46 of BC patients (39% TTH and 46% MiG). TTH patients exhibited hypometabolism in specific brain regions before NAC. TTH patients with a pathological complete response (pCR) to NAC showed hypermetabolic brain regions in the anterior medial frontal cortex. The correlation between tumor uptake and brain metabolism varied before and after NAC, suggesting an inverse relationship. Additionally, the single-subject analysis revealed that hypometabolic brain regions were not present after NAC. Primary headache, especially MiG, was associated with a better response to NAC. These findings suggest complex interactions between BC, headache, and hormonal status, warranting further investigation in larger prospective cohorts.

5.
Appl Spectrosc ; 77(1): 74-87, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36190333

RESUMO

This work demonstrates terahertz time-domain spectroscopy (THz-TDS) in reflection configuration on a class of inorganic and mineral pigments. The technique is validated for pictorial materials against the limitations imposed by the back-reflection of the THz signal, such as weak signal intensity, multiple signal losses and distortion, as well as the current scarce databases. This work provides a detailed description of the experimental procedure and method used for the determination of material absorption coefficient of a group of 10 pigments known to be used in ancient frescoes, that are, Cu-based (azurite, malachite, and Egyptian blue), Pb-based (minium and massicot), Fe-based (iron oxide yellow, dark ochre, hematite, and Pompeii red) pigments and mercury sulfide (cinnabar), and classified the vibrational modes of the molecular oxides and sulfides for material identification. The results of this work showed that the mild signal in reflection configuration does not limit the application of THz-TDS on inorganic and mineral pigments as long as (i) the THz signal is normalized with a highly reflective reference sample, (ii) the secondary reflected signals from inner interfaces are removed with a filtering procedure, and (iii) the limitations at high frequencies imposed by the dynamic range of the instrument are considered. Under these assumptions, we were able to differentiate molecular phases of the same metal and identify azurite, Egyptian blue, minium, and cinnabar, isolating the molecular vibrations up to 125 cm-1. The established approach demonstrated to be reliable, and it can be extended for the study of other materials, well beyond the reach of the heritage domain.

6.
Diagnostics (Basel) ; 12(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36359560

RESUMO

BACKGROUND: Diagnosis of vasculitis is challenging. To avoid invasive approaches, clinical guidelines recommend the use of diagnostic imaging. This study aimed at evaluating the diagnostic accuracy of [18F]-fluorodeoxyglucose ([18F]FDG) position emission tomography/computed tomography (PET/CT) in large vessel vasculitis (LVV) and how this is affected by inter-operator variability. METHODS: A total of 279 patients who performed [18F]-FDG PET/CT for suspicion of LVV were retrospectively analyzed. We tested the qualitative and semi-quantitative analysis and parameters influencing image quality and interpretation. Exams were evaluated by two readers with different experience and their performance was compared. RESULTS: LVV diagnosis was confirmed in 81 patients. [18F]-FDG PET/CT accuracy was 73% and 67% for the expert reader and less experienced reader, respectively. The expert reader overall performed better than the less experienced one, with higher accuracy in patients with normal BMI (77.3 vs. 63.8%), normal level of glycemia (73.3 vs. 65%), younger age (76.6 vs. 68.2%), and when no therapy was in course at time of imaging (76.7 vs. 66.7%). The diagnostic performance of both readers did not improve using semi-quantitative parameters. CONCLUSIONS: We confirmed the appropriateness of the recommended criteria for image acquisition and interpretation, underlining the importance of experience in image interpretation for the optimal diagnostic performance of [18F]FDG PET/CT in vasculitis.

7.
Sci Rep ; 11(1): 11187, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045535

RESUMO

This paper describes the analysis of two near-spherical metallic inclusions partially incorporated within two Roman raw glass slags in order to elucidate the process that induced their formation and to determine whether their presence was related to ancient glass colouring processes. The theory of metallic scraps or powder being used in Roman times for glass-making and colouring purposes is widely accepted by the archaeological scientific community, although the assumption has been mainly based on oral traditions and documented medieval practices of glass processing. The analysis of the two inclusions, carried out by X-ray computed tomography, electrochemical analyses, and scanning electron microscopy, revealed their material composition, corrosion and internal structure. Results indicate that the two metallic bodies originated when, during the melting phase of glass, metal scraps were added to colour the material: the colloidal metal-glass system reached then a supersaturation condition and the latter ultimately induced metal expulsion and agglomeration. According to the authors' knowledge, these two inclusions represent the first documented and studied finds directly associated with the ancient practise of adding metallic agents to colour glass, and their analysis provides clear insights into the use of metallic waste in the glass colouring process.

8.
Materials (Basel) ; 10(11)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160862

RESUMO

In conservation, science semiconductors occur as the constituent matter of the so-called semiconductor pigments, produced following the Industrial Revolution and extensively used by modern painters. With recent research highlighting the occurrence of various degradation phenomena in semiconductor paints, it is clear that their detection by conventional optical fluorescence imaging and microscopy is limited by the complexity of historical painting materials. Here, we illustrate and prove the capabilities of time-resolved photoluminescence (TRPL) microscopy, equipped with both spectral and lifetime sensitivity at timescales ranging from nanoseconds to hundreds of microseconds, for the analysis of cross-sections of paint layers made of luminescent semiconductor pigments. The method is sensitive to heterogeneities within micro-samples and provides valuable information for the interpretation of the nature of the emissions in samples. A case study is presented on micro samples from a painting by Henri Matisse and serves to demonstrate how TRPL can be used to identify the semiconductor pigments zinc white and cadmium yellow, and to inform future investigations of the degradation of a cadmium yellow paint.

9.
Materials (Basel) ; 10(4)2017 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-28772700

RESUMO

It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...